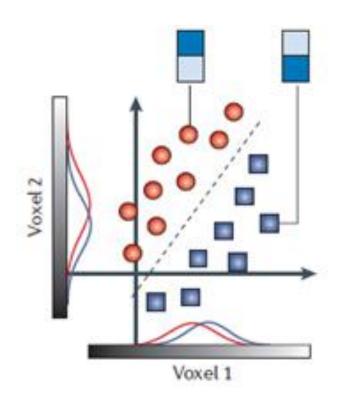


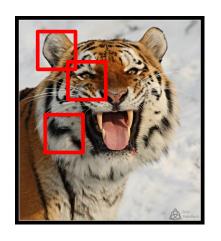
Outline

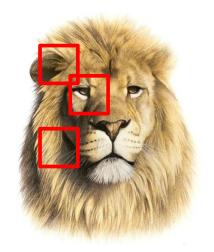
- Basic principles
- What do we get from SVM?
- SVM Modifications
- Applications in Neuroimaging
- Available software packages

Idea behind

- To recognize multivariate patterns
- Supervised learning
- Providing predictions for new data



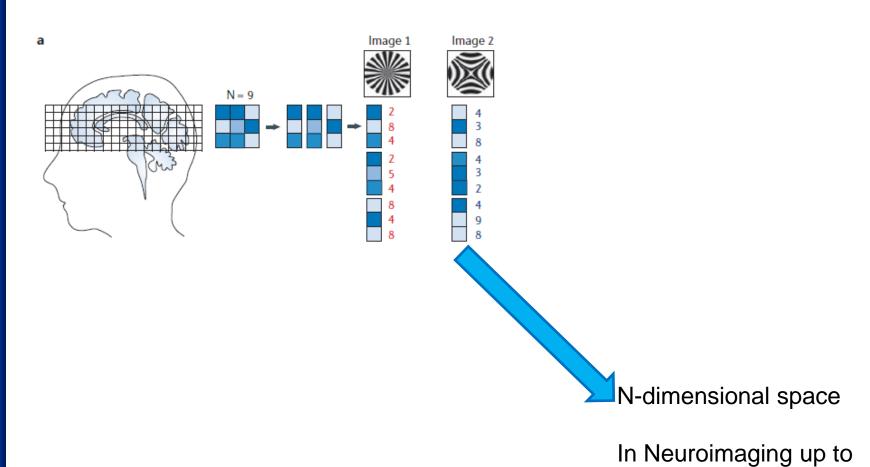




Training data

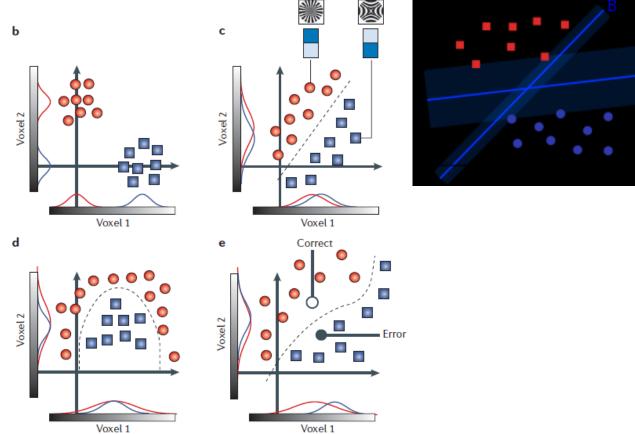
Decision boundary

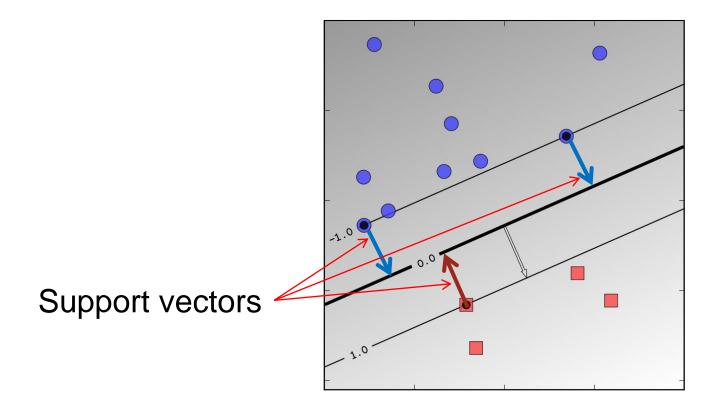
Testing data



several million features

For N = 2





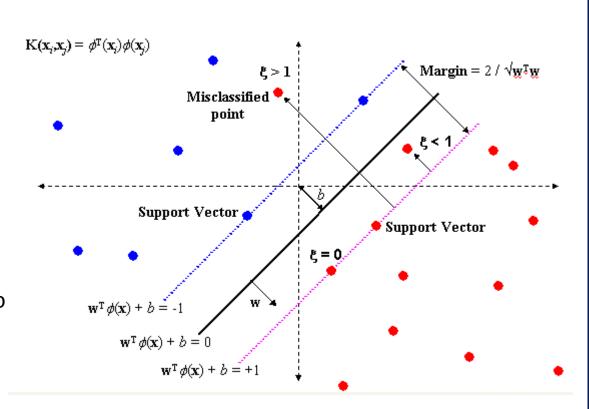
Φ: implicit embedding function

 (\mathbf{x}_i, y_i) : training data from 2 classes such that $y_i = \pm 1$

A Support Vector Machine finds a hyperplane $\mathbf{w}^{\mathsf{T}} \mathcal{D}(\mathbf{x}) + b = 0$ that best separates the two classes.

→ maximises the margin→ while minimising some

measure of loss on the training data.



Primal problem:

$$\min_{\mathbf{w},\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^t\mathbf{w} + C\mathbf{t}^t\boldsymbol{\xi}$$

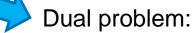
subject to
$$y_i(\mathbf{w}^t \phi(\mathbf{x}_i) + b) \ge 1 - \xi_i$$

$$\geq 0$$
 (3)

(1)

(2)

where
$$\phi^t(\mathbf{x}_i)\phi(\mathbf{x}_i) = K(\mathbf{x}_i, \mathbf{x}_i)$$
 (4)



Diagonal matrix with labels on the diagonal

$$\max_{\alpha} \quad 1^{t} \alpha - \frac{1}{2} \alpha \text{YKY} \alpha \tag{5}$$

User defined penalty

subject to
$$0 \le \alpha \le C$$
, $\mathbf{1}^t \mathbf{Y} \alpha = 0$ (6)

Perpendicular to $W = \sum_{i} y_{i} \alpha_{i} \Phi(x_{i})$ the hyperplane

What do we get from SVM?

- We get a model allowing us to classify new data
- We get the importance of each feature for separation (weights*)
- We get support vectors (Subjects information close to the boundary)
- We get not only a binary decision but also a probability/certainty for a specific decision

*Feature weights for each feature = Support vectors * support vector coefficients

SVM Modifications

- Relevance Vector Machines → uses a sparse feature set extracted from SVM
- Combination with Markov random fields using neighborhood information as features
- Multi-class SVM
- Support vector regression → predicts continuos variables

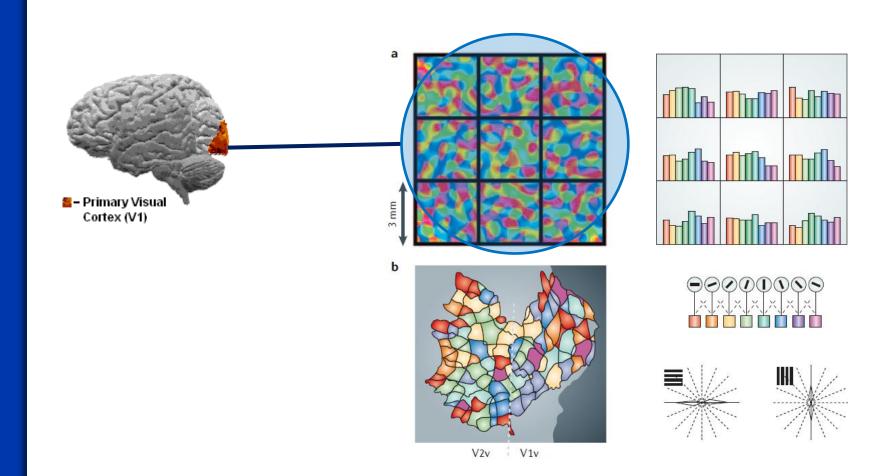
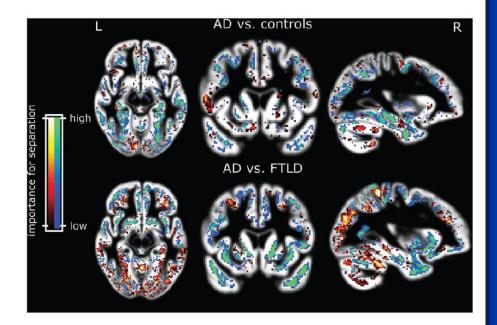


Table 2 Results of SVM classification using grey matter from the whole brain for image analysis

Group	Correctly classified (%)	Sensitivity (%)*	Specificity (%)*
AD and controls Group I	95.0	95.0	95.0
AD and controls Group II	92.9	100	85.7
AD and controls Group III	81.1	60.6	93.0
Dataset I for training, set II for testing	96.4	100	92.9
Dataset II for training, set I for testing	87.5	95.0	80.0
Group I + II	95.6	97.1	94.I
AD from Dataset II and FTLD Group IV	89.2	83.3	94.7

^{*}Considering a correctly identified AD case as a true positive.



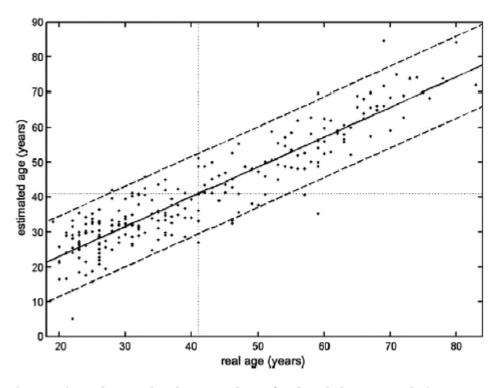
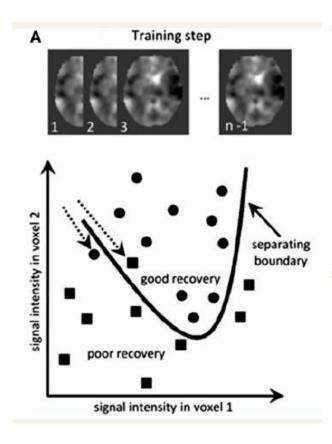
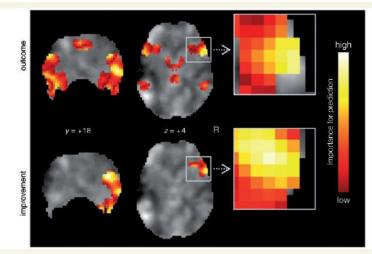


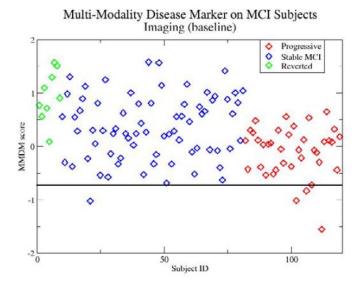
Fig. 3. Estimated age and real age are shown for the whole test sample (TEST1-3 + TEST4) with the confidence interval (dashed lines) at a real age of 41 years of \pm 11.5 years. The overall correlation between estimated and real age is r = 0.92, and the overall MAE = 4.98 years.





Classification problem: Alzheimer's disease vs healthy aging

Modalities used	Accuracy	Sensitivity	Specificity	Area under ROC
Imaging modalities	0.876	0.789	0.938	0.944
Biological measures	0.704	0.581	0.794	0.767
Cognitive scores	0.912	0.892	0.926	0.983
All modalities	0.924	0.867	0.966	0.977



Available software packages

- www.shogun-toolbox.org (<u>Shogun (toolbox)</u> contains about 20 different implementations of SVMs)
- <u>libsvm</u> libsvm is a library of SVMs which is actively patched
- <u>liblinear</u> liblinear is a library for large linear classification including some SVMs
- <u>flssvm</u> flssvm is a least squares svm implementation written in fortran
- Shark Shark is a C++ machine learning library implementing various types of SVMs
- <u>dlib</u> dlib is a C++ library for working with kernel methods and SVMs
- <u>SVM light</u> is a collection of open-source software tools for learning and classification using SVM.

Thank you for attention!

